बेसिक मैथ उदाहरण

aを解きます 17^2 = square root of 8^2+a^2
चरण 1
समीकरण को के रूप में फिर से लिखें.
चरण 2
समीकरण के बाईं पक्ष की ओर मूलांक निकालने के लिए, समीकरण के दोनों पक्षों का वर्ग करें.
चरण 3
समीकरण के प्रत्येक पक्ष को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 3.2.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.1.2.2
व्यंजक को फिर से लिखें.
चरण 3.2.1.2
को के घात तक बढ़ाएं.
चरण 3.2.1.3
सरल करें.
चरण 3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1.1
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 3.3.1.1.2
को से गुणा करें.
चरण 3.3.1.2
को के घात तक बढ़ाएं.
चरण 4
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.1.2
में से घटाएं.
चरण 4.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 4.3
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1.1
में से का गुणनखंड करें.
चरण 4.3.1.2
को के रूप में फिर से लिखें.
चरण 4.3.2
करणी से पदों को बाहर निकालें.
चरण 4.4
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 4.4.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 4.4.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 4.4.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 5
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: